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Abstract 
This paper considers whether or not the internals of NLP 
systems can be a black box with respect to the modeling of 
how humans process language in answer to the question “Is 
cognitive science relevant to AI problems?”. Is it sufficient 
to model the input/output behavior using computational 
techniques which bear little resemblance to human language 
processing or is it necessary to model the internals of human 
language processing behavior in NLP systems? The basic 
conclusion is that it is important to look inside the black box 
of the human language processor and to model that behavior 
at a lower level of abstraction than input/output behavior. 
The development of functional NLP systems may actually 
be facilitated, not hindered, by adoption of cognitive 
constraints on how humans process language. The relevance 
of this position for the symposium is considered and some 
suggestions for moving forward are presented. 

NLP Systems as a Black Box 

Natural Language Processing (NLP) is a quintessential AI 
Hard Problem. For an NLP system to be successful, it must 
mimic human behavior at the level of input and output. 
Otherwise, successful communication with humans will not 
be achieved. Unlike many other AI systems, performing 
better than humans is not a desirable outcome (although 
performing as well as expert communicators is). The key 
question is whether or not human-like input and output can 
be achieved using computational mechanisms that bear 
little resemblance to what cognitive science and cognitive 
psychology tell us is going on inside the head of humans 
when they process language. Can NLP systems be a 
cognitive black box (Is cognitive science relevant to AI 
problems)? 

To date, research in the development of functional NLP 
systems has largely adopted the black box approach—
assuming that modeling the “internals” of human language 
processing is undesirable, and hopefully, unnecessary. It is 
undesirable because it would impose severe constraints on 
the development of functional NLP systems, and, besides, 
the basics of how humans process language have not been 
sufficiently worked out to support computational 
implementation. The NLP problem is too hard for us to 

make progress if we accept the constraints on human 
language processing proposed by cognitive science 
researchers—especially given the many conflicting 
hypotheses they have put forward—and try to populate the 
black box with cognitively plausible systems. 

But there is considerable evidence to suggest that AI 
researchers ignore the constraints of cognitive science and 
cognitive psychology at their own peril. The advent of the 
parallel distributed processing (PDP) strain of 
connectionism (Rumelhart and McClelland, 1986) was in 
part the product of cognitive science researchers focused on 
modeling the “internals” of human cognitive and perceptual 
behavior. Connectionist researchers highlighted many of 
the shortcomings of symbolic AI, arguing that they resulted 
from an inappropriate cognitive architecture, and proposing 
alternatives that delved inside the black box of cognition 
and perception, trying to specify what a cognitive system 
would be composed of at a level of abstraction somewhere 
above the neuronal level, but definitely inside the black 
box. The confrontation between connectionism and 
symbolic AI has largely subsided, and many of the 
connectionist claims have been shown to be overstated (cf. 
Pinker and Prince, 1988), but it seems clear that 
connectionist models do capture important elements of 
perception and cognition, particularly lower level 
phenomena. Many AI researchers are now working to 
integrate connectionist layers into their hybrid 
symbolic/subsymbolic systems (Sun and Alexandre, 1997) 
to capture the symbolic irregularities the connectionist 
systems revealed and which purely symbolic systems 
cannot easily model.  

Within NLP, the problems of noisy input, lexical and 
grammatical ambiguity and non-literal use of language call 
out for adoption of techniques explored in connectionist 
and statistical systems, many of which come out of research 
in cognitive science. For example, Latent Semantic 
Analysis (LSA) (Landauer & Dumais, 1997), a statistical, 
data-reduction technique that is being used by 
psycholinguists to capture the latent (i.e. non-explicit) 
meaning of words as a multi-dimensional vector, offers 
hope for solving previously intractable problems in 
meaning representation—especially the problem of 
determining similarity of meaning without assuming 



discrete word senses. If the LSA approach is successful, 
then an avalanche of NLP research on word sense 
disambiguation that is based on the identification of 
discrete word senses will need to be revisited.  

Psycholinguistically motivated symbolic resources like 
WordNet—a computational implementation of a large scale 
mental lexicon—are also being adopted by many AI 
researchers (Fellbaum, 1998). The primary use of WordNet 
within the AI community is as a tool for scaling up NLP 
systems, without necessarily adopting the psycholinguistic 
principles on which it is based and without making claims 
of cognitive plausibility in the resulting systems. 
Interestingly, George Miller, the cognitive scientist leading 
development of WordNet, laments the fact that WordNet is 
not being used more extensively by the psycholinguistic 
community. However, since psycholinguists are not usually 
concerned with the development of large-scale systems, and 
since WordNet, like many other computational 
implementations of cognitive theories, has had to make 
some admittedly non-psychological choices, it has not had 
a major impact on this community. 

As these examples attempt to show, AI researchers have 
historically paid attention—if somewhat reluctantly—to the 
major trends in cognitive science and will continue to do 
so. But AI researchers must adapt the products of cognitive 
science to their own research agenda—the development of 
intelligent, functional computer systems. AI researchers are 
unlikely to spend years of research exploring specific 
cognitive phenomena. Such research does not lead to the 
development of functional systems. However, given the 
complexity of the systems they are building, AI researchers 
should seek awareness of advances in cognitive science that 
point the way towards computational implementation of 
more humanly plausible systems.  

An awareness of cognitive science research is especially 
important for the development of functional NLP systems.  
The search space for possible solutions to the development 
of NLP systems is huge (perhaps infinite). To date most 
systems have been searching the part of that space 
consistent with our basic understanding of computation and 
symbol manipulation. But if philosophers like Searle (1980) 
and cognitive scientists like Harnad (1990, 1992) are right, 
ungrounded symbol systems will only prove suitable for 
solving a limited range of problems. Ultimately, our symbol 
systems will need to be grounded if they are to display the 
full range of human behavior and intelligence. Philosophers 
like Prinz (2002) and psychologists like Barsalou (1999) 
and Zwaan (2004) are exploring the implications of the 
perceptual grounding of symbols, and their research could 
well have important implications for NLP systems. Their 
research may open up additional subspaces in the search 
space for solutions to NLP problems that are ripe with 
interesting possibilities to be explored. To the extent that 
research in cognitive science is able to focus the search for 
solutions on fruitful paths and to prune the search tree by 
eliminating non-productive branches, it could actually 
facilitate the development of functional systems. This 
search argument hinges on the assumption that cognitively 
implausible systems are unlikely to be able to mimic human 

input/output behavior in a domain as complex and human 
centric as language processing. It is the assumption that 
NLP systems should not be cognitive black boxes (That 
cognitive science is relevant to AI problems). That we are 
more likely to be successful in developing NLP systems by 
modeling the human cognitive behavior inside the box than 
by applying computational mechanisms that only attempt to 
mimic input/output behavior. 

Cognitive and Computational Constraints 

Having argued for the adoption of cognitive constraints in 
the development of large-scale functional NLP systems, it 
must be admitted that there are few successes to date, and 
very few researchers who are even engaged in this line of 
research. An obvious way to apply cognitive constraints is 
to develop NLP systems within a cognitive architecture like 
ACT-R (Anderson et al., 2004: Anderson and Lebiere, 
1998) or Soar (Rosembloom et al., 1993). NL-Soar 
(Lehman et al., 1995) is one of the very few NLP systems 
developed in a cognitive architecture. NL-Soar was used in 
the TacAir-Soar (Laird et al., 1998) project to provide 
natural language capabilities to synthetic agents which 
participated as enemy aircraft in a Tactical Air simulation. 
NL-Soar and TacAir-Soar were among the first successful 
uses of a cognitive architecture to build functional agents 
with language capabilities. However, during the course of 
the TacAir-Soar project, cognitive plausibility was de-
emphasized in the interest of developing a functional 
system within the time constraints of the project. Even 
within a cognitive architecture it is possible to build 
cognitively implausible systems. 

The AutoTutor system (Graesser et al., 2001) is another 
example of an NLP system influenced by cognitive science 
research. AutoTutor is a intelligent tutor that helps students 
learn how to solve physics problems. Although AutoTutor 
is not implemented in a cognitive architecture, it is based 
on extensive psycholinguistic research in discourse 
processing (Graesser et al., 2003) and it makes use of LSA 
to assess the meaning of student responses that cannot be 
fully processed by the higher level language understanding 
component. A key feature of AutoTutor is the integration of 
a talking head. Talking heads and avatars introduce a host 
of additional requirements for modeling human-like 
behavior in AI systems.   

In my own research (Ball, 2004), I am using the ACT-R 
cognitive architecture to support the development of a 
functional language comprehension system (originally 
implemented in Prolog). A prototype system that constructs 
linguistic representations from written input currently exists 
and an ambitious research program leading to the 
development of language-enabled synthetic entities capable 
of interacting with humans and other agents in simulation 
environments is in the initial stages. As an initial attempt to 
scale up the prototype system, the use of Cyc to add 
commonsense knowledge was explored (Ball et al., 2004). 
More recently, an interface to WordNet has been adapted 
for use with ACT-R. A key challenge will be to integrate 



WordNet and/or Cyc into the system in a cognitively 
plausible manner and not just as an external database of 
lexical and commonsense knowledge. That means 
transparently integrating these resources with the spreading 
activation mechanism of ACT-R and with any other 
cognitive mechanisms with which they interact. While this 
may seem like an unnecessary constraint on the 
development of a functional system, integrating WordNet 
with ACT-R’s spreading activation mechanism is key to 
solving the word sense disambiguation problem (at least 
within ACT-R). An NLP system developed without access 
to ACT-R’s spreading activation mechanism would need 
some alternative mechanism for solving this problem (e.g. 
LSA). Thus, although ACT-R’s spreading activation 
mechanism constrains the development of the system, it 
provides a needed capability which is motivated by a 
mountain of psychological evidence, and this capability is 
seen as a benefit of the architecture and not a limitation.  

As another example of a cognitive constraint imposed by 
a cognitive architecture, ACT-R lacks a backward 
reasoning mechanism. Productions in ACT-R are only 
selected and executed via forward chaining. Again, there is 
a large amount of psychological evidence supporting this 
architectural constraint. Procedural knowledge is 
directional, and that direction is forward. On the other 
hand, backward chaining is a frequently used 
computational technique in AI systems (especially in 
reasoning systems). Many AI researchers would be 
reluctant to excise this technique from their computational 
toolbox. But if human language processing ability does not 
make use of backward chaining, then including such a 
capability in an NLP system distances the system from 
human language processing behavior and makes the 
mapping to human input/output behavior more problematic. 
Besides limiting production execution to forward chaining, 
ACT-R provides no mechanism for backtracking when 
production execution leads to a dead end. Consider the 
problem of processing garden path sentences like 

 The horse raced past the barn fell (Townsend and 
Bever, 2001) 

It might be assumed that an algorithmic backtracking 
mechanism is needed to process such sentences—when a 
problem is encountered the processor backtracks and tries 
different alternatives (i.e. competing productions) until a 
solution is found. A large amount of psycholinguistic 
research demonstrates the difficulty humans have in 
processing such sentences, but there is little evidence that 
humans use anything like a backtracking algorithm to 
process such sentences. They do try to process garden path 
sentences multiple times, but not in an algorithmic 
backtracking manner. In my own experience of presenting 
this sentence to non-linguists, they are unable to make 
complete sense of it without elaborate explanation. 
Although most linguists consider this sentence to be 
perfectly grammatical—an instance of a reduced relative 
clause—and an NLP system with a backtracking 
mechanism and rules for recognizing reduced relative 

clauses would eventually arrive at an appropriate parse, 
most non-linguists just cannot make full sense of it. They 
may reason that either “the horse” or “the barn” fell, but 
they have great difficulty in treating “the horse” as the 
patient of the verb “raced” rather than the agent—which is 
what a reduced relative clause reading leads to, as the 
unreduced and expanded form below demonstrates: 

 The horse (patient) that was raced past the barn by the 
jockey (agent) fell 

An NLP system that is ignorant of such human limitations 
may generate garden path sentences which humans will be 
unable to interpret. 

As another example, humans have great difficulty in 
processing center embedded constructions like: 

 The mouse the cat the dog chased bit ate the cheese 

These constructions are easily handled using a stack 
mechanism capable of storing the noun phrases until the 
verbs are encountered and unwinding the stack to assign 
verbs to the appropriate noun phrases. I take the difficulty 
of these sentences for humans as an indication that they do 
not have a stack mechanism to support language processing 
(McElree et al., 2003), and more generally, that humans 
have great difficulty dealing with genuinely recursive 
structures. (Earlier versions of ACT-R contained a goal 
stack which was removed due to mounting evidence that 
humans do not have perfect memory for previous goal 
states.) An NLP system that makes use of a stack for 
language generation might well generate sentences that 
humans would be unable to process.  

On the other hand, there are right embedded variants of 
the sentence above that humans can process: 

The dog chased the cat that bit the mouse that ate the 
cheese 

The fact that humans can process such sentences suggests 
that they are not truly recursive. It is well known that tail 
recursion in a higher level programming language like Lisp 
can be converted into iteration by the compiler, thereby 
reducing the memory demands of the system and improving 
performance. Given the extremely limited capacity of 
humans to retain separate chunks of information in 
awareness—current estimates indicate a capacity of around 
4 chunks (Cowan, 2001)—the ability to make sense of such 
sentences suggests the chunking of the prior input (e.g. “the 
dog chased the cat”) before processing the subsequent input 
(e.g. “the cat that bit the mouse”), effectively implementing 
an iterative processing mechanism to process what most 
linguists consider to be a recursive structure. If I am right 
about this, then computational techniques developed in 
computer science and AI may inform our understanding of 
how humans process language (Can artificial intelligence 
contribute to our understanding of human cognition?). 

Computer science provided the prevailing computer 
metaphor of the mind which has driven an extensive 
amount of research in cognitive science and cognitive 
psychology. While most cognitive scientists and 



psychologists no longer accept the cognitive validity of this 
metaphor, much research is still devoted to showing where 
and how the computer metaphor fails as an explanation of 
human cognitive behavior. Cognitive scientists and 
psychologists ignore advances in AI and computer science 
at their own peril. The advent of situated cognition (Clancy, 
1997) within AI and the focus on development of robots 
capable of navigating and communicating in the real world 
(Mavridis and Roy, 2005) are likely to provide results that 
will inform and guide cognitive science research. Recent 
successes in vision research (Umbaugh, 1998) and speech 
recognition (Huckvale, 1997) and synthesis need to be 
accommodated by the cognitive science community. As 
computational cognitive models are scaled up to larger and 
more complex problems and domains, the successes and 
failures of AI research will become more and more 
relevant. Computational cognitive scientists will need to 
adapt the results of AI research to suit their own research 
agenda—the development of cognitively plausible 
computational cognitive models (Can artificial intelligence 
contribute to our understanding of human cognition?). 

Speech Recognition: at a Crossroads? 

Speech recognition systems have achieved phenomenal 
success in the last decade. Dragon Dictate can transcribe 
the spoken input of a user on which the system has been 
sufficiently trained with impressive accuracy. Although 
already impressive, the quality of speech recognition 
systems continues to improve. According to X. Huang (in 
Barker, 2002) word error rates have been reduced an 
average of 10% each year over the preceding decade and 
improvements in performance are likely to continue.  

Speech recognition systems are typically based on the 
use of Hidden Markov Modeling and statistical and search 
techniques which are not cognitively motivated and it is 
acknowledged that engineering and cognitive science 
approaches to speech research have significantly diverged 
(Huckvale, 1998). Do speech recognition systems 
constitute a counter example to the basic premise of this 
paper? Despite the successes cited above, the performance 
of speech recognition systems on large vocabulary, speaker 
independent, continuous speech in noisy environments falls 
well short of human performance. While it still remains to 
be seen if the use of powerful computational and search 
techniques which are not cognitively motivated will 
ultimately succeed in matching or exceeding human 
performance in speech recognition, there is considerable 
consensus in the cognitive science community that many of 
the simplifying assumptions of existing systems limit their 
potential to match human performance. For example, most 
systems are based on the assumption that speech can be 
represented as a sequence of phones (a basic unit of 
speech). However, there is ample evidence of coarticulatory 
effects between neighboring phones which call this 
assumption into question. There is also considerable 
evidence that the syllable and not the phone is the most 
perceptually salient unit of speech. In addition to providing 

an acoustic model based on a string of phones, most speech 
recognition systems also provide a language model based 
on either word co-occurrence (bigram or trigram frequency) 
or some sort of finite state grammar. If a grammar is used, 
it is typically fully expanded into the language model to 
support statistically integration with the acoustic model. 
From the perspective of higher level language processing, 
the language model of most speech recognizers is overly 
simplistic and is incapable of representing the full range of 
structures which occur in unconstrained language. A large 
amount of research in speech recognition is currently 
focused on the development of techniques for integrating 
higher level linguistic knowledge into speech recognition 
systems.  For example, Microsoft has been trying for 
several years to integrate its speech recognition system with 
its separately developed NLP system (Barker, 2002). 
Unfortunately, there is a basic conflict in the way the two 
systems were developed. The NLP system processes input 
from right to left starting at the end of a sentence! What 
seemed like a reasonable engineering decision has 
precluded the integration of the NLP system with the 
separately developed speech recognition system. Had the 
NLP system developers taken cognitive plausibility more 
seriously, they might have avoided this major disconnect. 

But how relevant is cognitively based speech research 
for the development of speech recognition systems, and 
vice versa. Most cognitively based models of speech 
recognition make simplifying assumptions which limit their 
relevance. In particular, most such models begin with 
abstract representations of the speech input which 
circumvent many of the problems faced by speech 
recognition systems. As Scharenborg et al. (2005) note, a 
cognitive model which assumes that the input is a sequence 
of phonemes (a linguistic unit which is an abstraction over 
phones), sweeps many of the problems of speech 
recognition under the rug. Scharenborg et al. go on to 
suggest that cognitively based speech recognition systems 
should take advantage of research in automatic speech 
recognition by beginning with the raw acoustic input. They 
present a model of human spoken-word recognition which 
does just this. Like Huckvale (1998), they argue for 
increased communication between researchers who take an 
engineering or AI approach to speech research, and those 
who take a human-centered cognitive approach. They claim 
that this can be achieved by a focus on computational-level 
(Marr, 1982) descriptions of speech models which are 
relevant to both AI and cognitive science research in 
speech, rather than focusing on algorithmic or 
implementation-level descriptions which are not typically 
relevant across research areas. Although I agree in spirit 
with their argument, I am unsure to what extent algorithmic 
issues can be avoided in descriptions of speech recognition 
systems. For example, their cognitive model employs 
competition between competing hypotheses, whereas most 
speech recognition systems search for the most likely 
hypothesis without competition. This is a critical 
algorithmic difference and it may turn out that competition 
is an unnecessary element of their cognitive model (just as 
they claim that feedback is an unnecessary element of other 



cognitive models since feedback from lexical to pre-lexical 
levels cannot actually improve pre-lexical perception). 
Indeed, most speech recognition systems use neither 
competition nor feedback. 

Relationship to This Symposium 
To some extent the topic of this symposium is a false 
dichotomy. AI and Cognitive Science are not distinct fields 
of research. On one view, AI is one of the Cognitive 
Sciences. On another view, AI—as the general study of 
intelligence—encompasses both human and artificial 
intelligence (Boden, 1990). The history of AI and 
Cognitive Science is full of cross-disciplinary research, 
collaboration and contrast. A recent example is the 
Modular Construction of Human-Like Intelligence 
conference sponsored by AAAI. Individual researchers in 
AI and Cognitive Science must select their own approach to 
research—be it the development of functional systems, 
small scale models or empirical research. At the ends of the 
spectrum—the development of efficient algorithms and 
formal theories of computation within AI, versus the focus 
on empirical study of narrowly circumscribed cognitive 
phenomena in Cognitive Psychology—the fields do appear 
distinct. But the middle ground encompassing the 
development of systems that mimic human behavior and 
research aimed at explaining human behavior—what might 
be called “Cognitive AI”—provides a fruitful ground for 
interaction and exchange of ideas.  

Of course, there are real challenges to doing research in 
this middle ground. To the extent that AI research is 
dominated by research on the development of more 
efficient algorithms and formal theories (which from my 
perspective appeared to be the case at AAAI 2004), it will 
be difficult to get research on the development of 
cognitively plausible AI systems accepted—especially if 
those systems are not of the scale expected within the AI 
community. On the other hand, to the extent that sacrifices 
in cognitive plausibility are required to develop functional 
computational cognitive models, and to the extent that such 
models are not directly supported by empirical studies, it 
will be difficult to publish in the cognitive modeling and 
cognitive science community, which expects models to be 
closely tied to specific empirical results. Although the 
major venues for publication of AI and Cognitive Science 
research pose problems, smaller venues like this 
symposium and the human-like intelligence conference 
mentioned above do provide opportunities for publication 
and exchange of ideas.  

Perhaps this symposium can be seen as an attempt to 
raise awareness of the value of research at the intersection 
of AI and Cognitive Science within the AI community. A 
similar symposium at the Cognitive Science conference (or 
in some other Cognitive Science venue) might also be 
productive. The use of cognitive architectures for the 
development of large-scale AI systems could provide a 
basis for grounding the discussion. It should be emphasized 
that these cognitive architectures have only been available 

to support such research for the last decade or so and it has 
not yet been demonstrated that they scale (TacAir-Soar 
may be an exception). However, the DARPA Biologically 
Inspired Cognitive Architectures (BICA) program, which 
just started and has substantial funding, is directly aimed at 
extending architectures like Soar and ACT-R to insure they 
scale and to handle the full range of cognitive and 
perceptual phenomena needed for the development of 
functional systems capable of interacting in real world and 
simulated environments. Enticing AI researchers to explore 
the potential of these architectures for building functional 
systems and enticing Cognitive Modelers to scale up their 
models and focus less on modeling specific empirical 
results may prove to be a difficult sale, but, if successful, it 
will reinvigorate the connections between AI and Cognitive 
Science research.  

The key question asked in this paper is whether or not 
NLP systems can be a cognitive black box. More generally, 
can AI systems be developed using computational 
techniques lacking in cognitive plausibility. For an 
important subset of AI systems—those systems that are 
necessarily closely tied to human behavior—the answer 
appears to be “no”. It does not appear to be possible to 
match the nuances of human behavior in terms of 
input/output behavior without considering the internal 
processing mechanisms involved. Master chess programs 
may outperform most humans, but they fail to pass the 
Turing test in terms of their input/output behavior. So long 
as the interest is in developing good chess programs, this is 
not an issue, but if the goal is to develop a chess program 
that mimics human behavior, then the processing 
mechanisms, cognitive constraints and limitations that 
humans display become relevant. NLP systems are in the 
subset of AI systems that need to model human behavior 
closely enough to necessitate consideration of internal 
processing mechanisms. This does not mean that some 
abstraction away from the wetware of human cognition and 
perception is not possible, but that the appropriate level (or 
levels) of abstraction is not the level of input/output 
behavior. What the appropriate level of abstraction is for 
any particular AI system, is (or should be) a key topic of 
this symposium. For those AI systems which need to 
consider what goes on inside the cognitive black box, the 
products of research in cognitive science will be relevant 
and important. 
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